
Integrated Solar Thermal - 2 Stage GSHP -

Desuperheater - 3rd Stage Propane Furnace System

Plumbing Schematic & eZEio Integrated Controls

(Residential 2 Pipe Configuration)

Circulatory Pump Loops

A = Solar Transfer - solar thermal heat exchanger #1 loop to transfer tank loop

B = GSHP Battery – transfer tank to GSHP to 2500 gal. thermal battery loop

C = Geothermal Earth Loop – 300’ geothermal earth loop to transfer tank loop

D = Solar Domestic Hot Water (DHW) – preheat tank to solar thermal heat exchanger #2 loop

E = Solar Primary - solar thermal heat exchanger #2 loop to solar collector

Temperature & Humidity Sensors

T1 = Transfer Tank (GSHP EWT) T8 = Preheat Tank for Domestic Hot Water (DHW)

T2 = Thermal Battery T9 = GSHP LWT (leaving water temperature)

T3 = Solar Collector T10 = Outside Air (reset)

T4 = Thermal Battery Return T11 = Inside Air & Humidity - Zone 1 (feedback)

T5 = Geothermal Loop Return T12 = Inside Air & Humidity - Zone 2 (feedback)

T6 = Discharge Air T13 = Inside Air & Humidity - Zone 3 (feedback)

T7 = Solar Thermal Battery Y1 = 1st Stage GSHP Compressor Terminal

 Y2 = 2nd Stage GSHP Compressor Terminal

Most HVAC, solar thermal, solar photovoltaic (PV), domestic hot water (DHW), and energy recovery

ventilators (ERVs) have individual controls that are not adequate for integrated systems like that

described above. A single device that can provide integrated controls for multiple energy resources

through custom hardware and software development is appealing. This is particularly true if such an

integrated device can provide valuable data logging, and time saving diagnostics-troubleshooting tools

for HVAC technicians and third party monitoring including state-of-the-art analytics.

In terms of energy efficiency, the Oak Ridge National Lab and leading control manufacturers such as

tekmar reveal that integration of GSHPs, hydronic/radiant floor heating, thermal batteries (including

high thermal mass ICF/concrete structures), cooling, and DHW with a second stage fan-coil/air-handler

can reduce HVAC energy consumption by up to 50% in comparison with forced air alone. When

programmable features such as Outside Temperature Reset, Indoor Temperature Feedback, Dew Point

Reset, Strategic Zoning, Zoning Synchronization, Data Logging, Basic Analytics, and Smart Controls

are programmed into the eZEio Controller and integrated with Real-time Monitoring, Warning

Notifications, and state-of-the-art Maintenance & Diagnostic Systems, this can result in unprecedented

energy efficiencies.

The eZEio™ Integrated Controller

The eZEio™ Integrated Controller is a general

purpose Input/Output device, capable of

monitoring, logging and controlling a wide range of

devices and equipment through industry standard

connections over the Internet.

The eZEio™ Integrated Controller automatically

establishes a secure link to an array of redundant

and secure servers, allowing live access from a

standard web browser and eliminating the need for

fixed IP, complex firewall setup or special software.

Multiple eEZio™ Controllers can be set up under a

single user account, thus providing a simple

overview of the status of any number of sites spread out geographically from anywhere in the world.

All configuration, control, and access is accomplished by logging into the secure servers via the Internet

at www.ezecontrol.com.

The eZEio™ controller is available in the following configurations: sensors GSM/3G/GPS

Base Model

The eZEio connects to the Internet via standard 10/100 Ethernet and uses wired peripherals via Modbus,

MicroLAN and discrete in/outputs.

Wireless Sensors

The eZEio can be configured with a wireless transceiver module to allow for wireless sensors and

expansion units. The wireless protocol is encrypted and only wireless devices from eZE System can

communicate with the eZEio controller over this network. Typical indoor range is about 30m (100ft) but

that obviously depends on wall materials and other environmental factors.

GSM/3G/GPS

When configured with a built-in GSM modem, the eZEio can communicate with the Internet via cell

service. This requires service from a local cell provider and only GSM systems are supported. The

controller will use the physical Ethernet path if it is available, but automatically switches to GSM if it

can't communicate over Ethernet.

The GSM modem also supports GPS, so with the addition of an external antenna, the controller will

have access to its position in real time. All versions run the same software and all other features are the

same.

Some features depend on the service level. All versions come with four months of Basic Service, which

allows for logging data from five inputs. See the company web page at www.ezesys.com for details

about service levels and monthly cost for advanced services.

The eZEio Controller operates using the PAWN programming/scripting language to provide custom

integrated controls for multiple sources of energy resources at a fraction of the price of purchasing

individual controls that are often incompatible.

http://www.ezecontrol.com/
http://www.ezesys.com/

Custom Programming of eZEio Integrated Controls

Whatever the language or tool, programming is a craft that requires a particular approach to problem

solving —or even a particular way of thinking about activities and information. It centers around

analysis: “what needs to be done under which conditions and criteria”, reductionism: subdividing a large

task into a hierarchy of smaller tasks, and synthesis: bringing it all together.

Before starting to build a program, one must understand the problem at hand. Once you have a good idea

of what the program must do, you have to think about a solution in small discrete and deterministic

steps. Each step may have inputs and outputs and you can describe the function of the steps in terms of

the inputs and outputs alone—this is what the term discrete refers to.

Formulating Operational Controls

Conditions Affecting Circulation Pump A (CPA)

BOTH LINES IN SHOULDERS – 1ST LINE ONLY IN WINTER

If T3 > T1+5, then turn CPA ON until T3 < T1+1, then turn CPA OFF

If T8 < 90°F, then turn CPA OFF until T8 > 120°F, then turn CPA ON

If a conflict exists, OFF trumps ON

Run Away Conditions:

If T3 > 200°F, then turn CPA OFF

If T1 > 100°F, then turn CPA OFF

Fail Safe Conditions:

If communication is lost, FAIL OFF

Conditions Affecting Circulation Pump B (CPB)

If T1 > T2+5, then turn CPB ON until T1 < T2+1, then turn CPB OFF

If T2 > 70°F, then turn CPB ON until T2 < 66°F, then turn CPB OFF

If the compressor Y is ON, then turn CPB ON

If the compressor Y is OFF, then turn CPB OFF

If a conflict exists, ON trumps OFF

Fail Safe Conditions:

If communication is lost, FAIL ON

Conditions Affecting Circulation Pump C (CPC)

If T1 < 42°F, then turn CPC ON until T1 > 45°F, then turn CPC OFF

If T1 > 70°F, then turn CPC ON until T1 < 66°F, then turn CPC OFF

Fail Safe Conditions:

If communication is lost, FAIL ON

Conditions Affecting Circulation Pump D (CPD)

ON IN SUMMER AND SHOULDERS – OFF IN WINTER

If T3 > T8+5, then turn CPD ON until T3 = T8+1, then turn CPD OFF

Run Away Conditions:

If T3 > 200°F, then turn CPD OFF

Fail Safe Conditions:

If communication is lost, FAIL OFF

Conditions Affecting Circulation Pump E (CPE)

If either CPA or CPD are turned ON, then turn CPE ON

If CPA and CPD are both turned OFF, then turn CPE OFF

Fail Safe Conditions:

If communication is lost, FAIL OFF

As soon as you cannot explain a step without referring to other “steps” in the program, you have either a

hidden input or an implied assumption, and you would do well to reconsider the analysis. The term

deterministic is meant to say that the functioning of a step or a sequence of steps may not depend on

(human) interpretation or judgment.

Many beginning programmers find it helpful to write down these steps in a flow chart (or some other

schematic). During the analysis of the problem and its solution, you will often find that some steps are

rather big —too big to be annotated in a little box in a flow chart. Such larger steps must be subdivided

further, perhaps in another flow chart.

Basic Flow Chart/Wiring Schematic of eZEio Integrated Control System

[eZEio Controller, inputs and outputs, one wire (cat 5) connections, ModBus (both sensor and control

inputs and outputs) MicroLAN (only sensor inputs and outputs) Firmware schematics, etc., for

Integrated Wiring of Controls and System Components including Data Logging, Basic and Advanced

Web-based Monitoring, Warning Notifications, & Diagnostic Tools]

Though this installation is using a 6 zone switching relay box manufactured by TACO, future

installations may use ModBus instead.

A flow chart or wiring schematic, such as the one depicted above, shows start & termination points,

processing, input & output functions, decisions and loops. Flow charts are among the oldest schematics

for software.

What most people perceive as “programming”, the act of writing code in a programming language, only

begins after the above analysis has been completed. Many programming languages exist, and what they

all have in common is that they have a strict and rigid “grammar” (called syntax) and the ability to

invent new “words” from a very small core vocabulary. The biggest difference between programming

languages and natural languages, however, is that programming languages were devised to allow

communication with a machine. A machine, or another programmable device, does exactly as instructed

—no more, no less. A machine does not assume anything about its environment; it neither anticipates

any future instructions, nor remembers what it did a fraction of a second ago. The “small, discrete,

deterministic steps” that the preceding paragraphs mentioned must, hence, also be precise and

comprehensive.

Flow charts, or other kinds of charts, can still be made with pencil on paper, but building a program that

a computer can run requires special tools —tools with names like compiler, linker/locator, editor and

debugger. Most programmers are also “power users” on their computers and the tools that they use are

frequently less polished than your favorite office suite. On the other hand, the tools made for

programmers often focus on letting you work efficiently, rather than wasting your time with animations,

silly sounds and other attempts to look cool. Briefly: be not deceived by the Spartan interface of

programmer’s tools.

Scripting programs for HVAC systems, even elaborate integration of solar thermal, solar PV, GSHPs,

desuperheaters, thermal battery systems, and energy recovery ventilators (ERVs), etc., are relatively

simple and straightforward to conceive, even for multiple stage heating, cooling, domestic hot water,

and ERV systems.

Integrated Controls, LLC is developing a library of scripts for the eZEio Integrated Control Systems.

Each of these integrated controls is being tested and proven in the field for use by HVAC, solar thermal,

solar PV, thermal battery, and ERV installers.

PAWN Scripting for eZEio Integrated Controller

[Bolded blue text in brackets and yellow highlighted text is inserted for instructional purposes only, it is not

part of the script]

[Input Definitions]

#define IN_T1 1

#define IN_T2 2

#define IN_T3 3

#define IN_T8 8

#define IN_Y 14

#define IN_LOGA 9

#define IN_LOGB 10

#define IN_LOGC 11

#define IN_LOGD 12

#define IN_LOGE 13

[Output Definitions]

#define OUT_A 1

#define OUT_B 2

#define OUT_C 3

#define OUT_D 4

#define OUT_E 5

#define OUT_A_SUMMER 7 [switch for summer status]

#define OUT_A_WINTER 8 [switch for winter status]

[Operational Definitions]

#define CHARGEDIFF 50 [ΔT 5°F turn ON]

#define CHARGEDIFFOFF 10 [ΔT 1°F turn OFF]

#define SOLARCHARGE 1200 [solar DHW preheat tank >120°F]

#define SOLARCHARGEOFF 900 [solar DHW preheat tank <90°F]

#define BATTTFER 700 [>70°F transfer tank threshold]

#define BATTTFEROFF 660 [<66°F transfer tank threshold]

#define GROUNDLOOPLOW 420 [<42°F winter low threshold, turn ON ground loop]

#define GROUNDLOOPLOWOFF 450 [>45°F winter high threshold, turn OFF ground loop]

#define GROUNDLOOPHIGH 700 [>70°F summer high threshold, turn ON ground loop]

#define GROUNDLOOPHIGHOFF 660 [<66°F summer low threshold, turn OFF ground loop]

#define OVERTEMPSOLAR 2000 [>200°F over-ride/shut OFF solar CP]

#define OVERTEMPTRANSFERTANK 1000 [<100°F over-ride/shut OFF transfer tank CP]

// Month, Day [calendar – seasonal parameters for specific locality]

new const SEASONS[] = {

 4, 15, // Summer start

 9, 15, // Summer end

 10, 1, // Winter start

 2, 18 // Winter end

};

new T1, T2, T3, T8;

new tick = 0;

main() [Start-up Script]

{

 // This code will run on startup only

 PDebug("Hello world!");

 SetOutput(OUT_A_SUMMER, 1);

 SetOutput(OUT_A_WINTER, 1);

}

// returns 1 for summer, 2 for winter or 0 for fall/spring

findSeason()

{

 if((GetMonth() > SEASONS[0]) || (GetMonth() == SEASONS[0] && GetDay() >= SEASONS[1]))

 if((GetMonth() < SEASONS[2]) || (GetMonth() == SEASONS[2] && GetDay() < SEASONS[3]))

 return 1; // Summer!

 if((GetMonth() > SEASONS[4]) || (GetMonth() == SEASONS[4] && GetDay() >= SEASONS[5]))

 return 2; // Winter!

 if((GetMonth() < SEASONS[6]) || (GetMonth() == SEASONS[6] && GetDay() < SEASONS[7]))

 return 2; // Winter

 return 0;

}

mlTempF(inputno)

{

 new x = GetInputValue(inputno) * 1125;

 return (x-670000)/1000;

}

processA() [Associated with Conditions for CPA]

{

 static c1 = 0;

 static c2 = 0;

 new x = 1;

 if(T3 > (T1+CHARGEDIFF)) c1 = 1;

 if(T3 < (T1+CHARGEDIFFOFF)) c1 = 0;

 if(T8 > SOLARCHARGE) c2 = 1;

 if(T8 < SOLARCHARGEOFF) c2 = 0;

 if(GetOutputState(OUT_A_WINTER)) { // Winter switch is ON

 if(GetOutputState(OUT_A_SUMMER)) { // Summer switch is ON

 if(c1==0 || c2==0)

 x = 0;

 }

 else { // Summer switch is OFF

 if(c1==0)

 x = 0;

 }

 }

 else { // Winter switch is OFF

 if(GetOutputState(OUT_A_SUMMER)) // ..summer is ON

 x = 0; // Never activate

 }

 if(T3 > OVERTEMPSOLAR)

 x = 0;

 if(T1 > OVERTEMPTRANSFERTANK)

 x = 0;

 SetOutput(OUT_A, x);

}

processB() [Associated with Conditions for CPB]

{

 static c1 = 0;

 static c2 = 0;

 if(T1 > (T2+CHARGEDIFF)) c1 = 1;

 if(T1 < (T2+CHARGEDIFFOFF)) c1 = 0;

 if(T2 > BATTTFER) c2 = 1;

 if(T2 < BATTTFEROFF) c2 = 0;

 if(GetInputState(IN_Y) || c1 || c2)

 SetOutput(OUT_B, 0); // Blue light ON

 else

 SetOutput(OUT_B, 1); // Blue light OFF

}

processC() [Associated with Conditions for CPC]

{

 static c1 = 0;

 static c2 = 0;

 if(T1 < GROUNDLOOPLOW) c1 = 1;

 if(T1 > GROUNDLOOPLOWOFF) c1 = 0;

 if(T1 > GROUNDLOOPHIGH) c2 = 1;

 if(T1 < GROUNDLOOPHIGHOFF) c2 = 0;

 if(c1 || c2)

 SetOutput(OUT_C, 0);

 else

 SetOutput(OUT_C, 1);

}

processD() [Associated with Conditions for CPD]

{

 static c1 = 0;

 if(T3 > (T8+CHARGEDIFF)) c1 = 1;

 if(T3 < (T8+CHARGEDIFFOFF)) c1 = 0;

 if(GetOutputState(OUT_A_WINTER)) // Winter switch is ON

 if(GetOutputState(OUT_A_SUMMER) == 0) // ..and summer is OFF

 c1 = 0; // Always turn off D

 if(T3 > OVERTEMPSOLAR)

 c1 = 0;

 SetOutput(OUT_D, c1);

}

processE() [Associated with Conditions for CPE]

{

 new x = 0;

 if(GetOutputState(OUT_A))

 x = 1;

 if(GetOutputState(OUT_D))

 x = 1;

 SetOutput(OUT_E, x);

}

@Tick(uptime) [General System Programming]

{

 // This event is called once per second

 // uptime is the number of seconds since last system reset

 T1 = mlTempF(IN_T1);

 T2 = mlTempF(IN_T2);

 T3 = mlTempF(IN_T3);

 T8 = mlTempF(IN_T8);

 if(GetOutputState(OUT_A_SUMMER) || GetOutputState(OUT_A_WINTER)) {

 if(--tick <= 0) {

 new s = findSeason();

 if(s == 1) {

 SetOutput(OUT_A_SUMMER, 1);

 SetOutput(OUT_A_WINTER, 0);

 }

 else

 if(s == 2) {

 SetOutput(OUT_A_SUMMER, 0);

 SetOutput(OUT_A_WINTER, 1);

 }

 else {

 SetOutput(OUT_A_SUMMER, 1);

 SetOutput(OUT_A_WINTER, 1);

 }

 tick = 600; // Check season every 10 minutes

 }

 processA();

 processB();

 processC();

 processD();

 processE();

 }

 SetInputValue(IN_LOGA, GetOutputState(OUT_A));

 SetInputValue(IN_LOGB, GetOutputState(OUT_B));

 SetInputValue(IN_LOGC, GetOutputState(OUT_C));

 SetInputValue(IN_LOGD, GetOutputState(OUT_D));

 SetInputValue(IN_LOGE, GetOutputState(OUT_E)); }

@Alarm(sourcetype, sourceno, alarmno) [System Alarm Notifications]

{

 // Any alarm will trigger this event

 // sourcetype is one of SOURCE_INPUT, SOURCE_SCHEDULE, SOURCE_TIMER

 // sourceno is the input/schedule/timer number

 // alarmno is the alarm number (1-4)

}

@Restore(sourcetype, sourceno, alarmno)

{

 // Any restore will trigger this event

 // sourcetype is one of SOURCE_INPUT, SOURCE_SCHEDULE, SOURCE_TIMER

 // sourceno is the input/schedule/timer number

 // alarmno is the alarm number (1-4)

}

@Timer(timerno)

{

 // called when a timer set by SetTimer triggers }

@ModbusReply(address, command, length, data[]) {

 // called as a result of ModbusSend when a modbus device sends a reply

 // address is the device modbus address

 // command is the modbus command

 // length is the number of bytes received (minus address, command and checksum)

 // data is the payload data, starting with the byte after the command byte }

Connections & Installation

Things to consider before installing the eZEio™ controller. The ezeio™ controller is designed for

indoor use and should be installed in a dry and clean location. Do not expose the controller to rain or

water, and avoid extreme temperatures. See the technical specifications for acceptable ranges.

The ezeio™ controller is a low voltage device. Never connect high voltage to the inputs or outputs, and

only use the supplied AC adapter to power the controller.

Do not run wires that connects to the ezeio™ (Inputs / outputs / MicroLAN /Ethernet / ModBus / power

or antenna) together with high voltage wiring. Use separate conduits whenever possible, and avoid

environments with excessive RF or magnetic radiation as this may interfere or even destroy the

eZEio™ controller.

Take necessary precautions to avoid large static discharges to the eZEio™ connections.

WARNING ABOUT MICROLAN AND PHONE CONNECTORS

Never use connectors or wires designed for phone networks for connecting MicroLAN devices. Phone

connectors usually alter the polarity, and will permanently damage MicroLAN devices, voiding

warranty.

Testing & Troubleshooting

Once we have gone through it all —when the analysis of the requirements and the decomposition into

small steps lie behind us and after having keyed in the program code, we can run the program and watch

its output. Often, the program does not behave as intended right away. It may not even run in its very

first version. This may be due to simple typing errors, which are easily fixed; but it may also be due to

the programmer not properly understanding the problem. Naturally, we now have to find and fix the

errors in the program, which is a cycle very similar to the one for the initial development:

 understand the program’s behavior and what the program should be doing instead

 find a solution/fix in small discrete steps,

 write these steps in a programming language,

 and review and test the program.

